3 Approaches to Vehicle Detection and Tracking

Three Udacity students each took different approaches to vehicle detection and tracking — some using deep learning and others using standard computer vision. Here’s what they learned!

Vehicle Detection and Tracking

Ivan Kazakov

Ivan has a terrific writeup of how to use deep learning for vehicle detection. He builds a model based on Faster-RCNN, but smaller and faster.

“The main idea is that since there is a binary classification problem (vehicle/non-vehicle), a model could be constructed in such a way that it would have an input size of a small training sample (e.g., 64×64) and a single-feature convolutional layer of 1×1 at the top, which output could be used as a probability value for classification.”

Udacity Self Driving Car Engineering Project 5 — Vehicle Detection

Martijn de Boer


Martijn uses a HOG and SVM approach to build a vehicle detection pipeline. He encountered some issues with noise and finds a creative solution.

“I was advised do try Hard Negative Mining to train my model more accurate, so I captured multiple images of the shadows / threes and added them to the non car image dataset. (to classify them among the non-car classes instead of the car classes)”

Automatic Vehicle Detection for Self Driving Cars

Priya Dwivedi

Priya uses a HOG and SVM approach to vehicle detection. By combining those with a threshold over time, she achieves great performance. She discusses some of the tradeoffs, however.

“Firstly, I am not sure this model would perform well when it is a heavy traffic situations when there are multiple vehicles. You need something with near perfect accuracy to avoid bumping into other cars or to ensure there are no crashes on a crossing. More importantly, the model was slow to run. It took 6–7 minutes to process 1 minute of video. I am not sure this model would work in a real life situation with cars and pedestrians on the road.”

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s